RNN for book classification

Mindlab Group, Ritual Group

Predict next word with NN (Language model)

Word embeddings properties

Word embeddings properties

(Mikolov et al., NAACL HLT, 2013)

From words to book representation

Represent a sequence of N words, by representing each word using word2vec embedding space and average their word vectors.

Take M sequences of vectors as input for a RNN. Label all sequences with the genre of the source book.

Total Books: 3629

Total Samples: ~68000

Dataset Distribution

Genre	Unsuccessful	Successful	Total
Detective Mystery	60	46	106
Drama	29	70	99
Fiction	30	81	111
Historical Fiction	16	65	81
Love Stories	20	60	80
Poetry	23	158	181
Science Fiction	48	39	87
Short Stories	123	135	258
Total	349	654	1,003

Proposed model

Results using RNN

Features	F1 score
Ashok (2013)	0.70
Char 3-5 grams	0.69
Typed prefix 3-gram	0.69
Writing Density (WR)	0.69
Readability	0.69
Sentic concepts & scores(SCS)	0.68
Book2Vec (DMM)	0.70
Book2Vec (DBoW+DMM)	0.70
Book10002Vec (DMC)	0.70
Book10002Vec (DBoW)	0.71
Book10002Vec (DBoW+DMC)	0.70
Unigram+Bigram	0.69
Book2Vec+SCS	0.71
Book2Vec+WR	0.70
Best Features except RNN	0.71
RNN	0.79

Representation of samples over 2D visualization

https://goo.gl/e9jO38

Image captioning

Next level of computer vision

Image Captioning

- A step beyond image classification or object detection.
- Requires the identification of complex relations between elements in the image
- Additionally requires a generative model to build meaningful sentences.
- A hard task to evaluate.
- Proposed methods focus on get higher BLEU scores, rather than solve the problem

Previous approaches

- Detect objects using complex features
- Identify actions, relations in the scene
- Train a language model
- Integrate...
- Sentence retrieval

Neural Image Caption generator

Model

Data

- CNN for images
- RNN for language modeling
- Backpropagation for training

Dataset nome	size		
Dataset name	train	valid.	test
Pascal VOC 2008 [6]	- 1	- 1	1000
Flickr8k [26]	6000	1000	1000
Flickr30k [33]	28000	1000	1000
MSCOCO [20]	82783	40504	40775
SBU [24]	1 M	-	67

An End-to-End approach:

O Vinyals - 2015

Generated sentences

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Attention models in Translation

D. Bahdanau 2014

Attention models in Image Captioning

14x14 Feature Map bird flying over LSTM -> а body of water 1. Input 2. Convolutional 3. RNN with attention 4. Word by Image Feature Extraction over the image

K. Xu, 2016

word

generation

Visual Alignments

Generated phrases

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.